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a b s t r a c t

An analysis is made of the impact sound generated when a water droplet impinges on a

nominally smooth air–water interface. Guo and Ffowcs Williams [Journal of Fluid

Mechanics 227 (1991) 345–355] derived a mathematical representation of the sound

produced in the initial period of impact of duration 51ms. The theory of this paper is a

the impact sound pulse. At the acoustic wavefront the predicted pressure signature in

the water consists of a large impulsive peak with the directivity of an acoustic monopole

source. Behind this peak lower frequency components of the sound are strongly

influenced by the effective pressure-release condition on the free surface of the water,

and the radiation acquires the characteristics of a much weaker dipole field (with dipole

axis normal to the water interface) accompanied by a rapid decrease in wave amplitude.

The dipole pressure exhibits a single cycle oscillation before decaying to evanescence

about 0.1 ms after the initial impact. Predictions of the acoustic pressure spectral level

are shown to be consistent with measurements available in the literature. Applications

of the theory are envisaged to situations where the entrainment of air bubbles by

droplets is not important, so that the impact is the dominant source of sound—for

example, in estimating the contribution to the self-noise of a supercavitating vehicle

from ventilating gas containing a ‘spray’ of small droplets impinging on the cavity gas–

water interface.

& 2010 Elsevier Ltd. All rights reserved.
1. Introduction

Small water droplets sprayed onto a gas–water interface constitute an important source of water-borne sound.
The familiar example of rain generated noise in the sea has been intensively studied since the 1940s [1–25] but a proper
understanding of the mechanics of sound production is important also in other contexts—such as, for example, in
quantifying the influence on the self-noise of a supercavitating vehicle of entrained droplets in ventilating gas impinging
on the gas–water cavity interface [26–28]. Similarly, although rain generated underwater noise contributes to the general
background sea noise, it has been shown by Nystuen and colleagues [23–25] that its accurate measurement by means of an
extensive array of underwater sensors can supply useful estimates of rainfall rates on the ocean for use in climate studies.

The sound is produced principally by two mechanisms [2]. The initial impact of the drop on the water interface
produces a sharp-fronted acoustic pulse of overall duration less than about 0.1 ms with amplitude varying as U3, where U is
the droplet impact velocity on the water, usually equivalent to its terminal velocity in air. Under calm conditions it appears
that the time scale of the pulse does not vary significantly with drop size [5,7], because the effect of increased drop size is
compensated by increased terminal velocity and drop shape modification due to drag.
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The entrainment of air in the wake of an impinging drop often results in the formation of a small air bubble whose
volume pulsations produce a second component of the underwater sound, usually about 20 ms after the initial impact
pulse. The bubble component is not always present, but it is usually the dominant source of noise when it occurs. It turns
out [8,11,12,14,17–20,22] that a droplet impinging at its terminal velocity on smooth water will entrain an air bubble only
for droplet diameters D in the range 0.8–1.1 mm (with corresponding terminal velocities U � 3:324:4 m=s), producing an
acoustic spectrum that peaks at the bubble resonance frequency, generally within the limited range 13–25 kHz [29]. Larger
drops have terminal velocities that are usually too large to entrain bubbles, and for 1:1 mmoDo2:2 mm only impact noise
is generated at the terminal velocity. However, impact ‘splashing’ of a drop with D42:2 mm often produces bubbles [15],
but then the bubble resonance contribution to the sound is delayed by up to 35–65 ms after the arrival of the impact pulse.
When D is very large (44 mm) it appears that the amplitudes of the impact and bubble radiations are of comparable
magnitudes [23,24].

Franz [2] argued erroneously that the main source of rain noise is the initial impact, because his observations implied
that bubbles were not usually entrained by raindrops; other possible mechanisms (such as secondary splashes or drop
vibration) not being important. Numerical investigations of the initial stages of drop impact on water reported in [4,7,16]
indicate that the characteristic impact time is not critically dependent on drop size, because larger drops are flattened
before impact. This and later measurements [21,30] prompted Nystuen [4] to conclude that the impact sound consists of a
single cycle pulse of characteristic time � 0:0520:06 ms, producing a broad spectral peak near 15–20 kHz. This coincidence
in peak frequency with that produced by entrained bubbles led initially to disagreement about the true cause of the
observed rain noise spectrum [22], but it is now generally agreed [23–25] that rain noise is dominated by the bubble
radiation.

Guo and Ffowcs Williams [13] gave the first detailed analysis of the impact acoustic pulse which is applicable to the
sound produced during about the first microsecond after ‘touch down’ on a nominally plane water surface. During this
time the ‘circle of contact’ [7] between the water surface and the entering drop expands supersonically relative to the
water and the contact region behaves as a very efficient high frequency, monopole acoustic source, with near field pressure
of order roUco (ro,co being, respectively, the water density and sound speed), as in Nystuen’s [4] earlier ‘water hammer’
theory. The sound generated during this initial period is uninfluenced by boundary conditions at the water surface outside
the circle of contact, and radiates directly to the far field producing a ‘wavefront’ pressure in the water that scales as roU2,
independently of radiation direction. The theory fails at later times that are dominated by acoustic waves of longer
wavelengths, because it is then necessary to take explicit account of the free surface ‘pressure release’ condition in
calculating the amplitudes of these waves.

In this paper a simple modification of the Guo–Ffowcs Williams [13] theory is described that permits the calculation of
the impact noise to be extended out to times encompassing the entire life span of the wave, which is typically about 0.1 ms
(during which time the radius of the circle of contact typically increases to no more than about 70 percent of the radius of a
spherical drop). The immediate consequence of free surface ‘pressure release’ is to change the effective sound source type
from the monopole of [13] that governs the impact noise at the wavefront, to a much less efficient dipole, with
characteristic wave amplitude scaling as roU2M ðM¼U=co51Þ, and with dipole axis normal to the mean water surface.
The free surface condition is incorporated into the theory by expressing the sound in terms of an acoustic Green’s function
that simultaneously vanishes on the free water surface outside the expanding circle of contact between the drop and the
water, and has vanishing normal derivative on the surface within the circle of contact. The sound can then be calculated
provided the normal component of velocity within this circle is known. This is accomplished by introducing a simple
analytical model that accounts for the rapid decrease in normal velocity after the initial impact. The predicted wave profile
behind the wavefront exhibits the single cycle oscillatory behaviour anticipated by Franz [2] and observed by Nystuen [21]
and others. The corresponding frequency spectrum is found to be consistent with observations of Nystuen [21] and
Pumphrey [22], although in the latter case the spectral peak is attributed to bubble oscillations, which are not discussed in
this paper.

The acoustic problem is formulated in Section 2. The wavefront characteristics investigated by Guo and Ffowcs Williams
[13] are reviewed in Section 3. Their theory is extended in Section 4 to cover the whole of the effective life time of the
impact pulse with the aid of a Green’s function whose derivation is outlined in the Appendix. Typical predictions and a
comparison with experiment are discussed in Section 5.
2. Formal representation of the impact noise

A water droplet impinges at normal incidence and speed U on the smooth, planar free surface of an expanse of water
that occupies in the undisturbed state the region x140 of the rectangular system x=(x1, x2, x3) (Fig. 1). Because a large drop
often suffers air-drag induced deformation before contact with the water surface, the droplet is assumed to have the form
of oblate spheroid with axis of symmetry of length 2R (parallel to the x1 axis) and ‘horizontal’ principal diameter 2Y. The
coordinate origin O is taken at the initial point of contact of the drop with the surface, which may be assumed to occur at
time t=0. Observation confirms that the impact sound is generated typically within the interval 0oUt=Ro0:4 (see, e.g.
[16,20–22]). This is short enough for the initial motion induced in the water to be regarded as irrotational, described by a
velocity potential jðx,tÞ, say.



Fig. 1. Spheroidal water droplet impinging at speed U on a nominally plane air–water interface.
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The characteristic Mach number M¼U=co51 (where co is the sound speed in water), so that the impulsive motion
generated in the water satisfies [31–33]

1

c2
o

q2

qt2
�

q2

qx2
j

 !
j¼ 0, (1)

where the repeated suffix j is summed over j=1, 2, 3, in the usual way. The relevant solution of this equation will be sought
in the region x140 in terms of conditions on the control surface S, say, that coincides with the undisturbed free surface
x1=0 of the water.

To do this we introduce a Green’s function Gðx,y,t,tÞ which satisfies (for x1,y140)

1

c2
o

q2

qt2
�

q2

qy2
j

 !
G¼ dðx�yÞdðt�tÞ, G¼ 0 for t4t: (2)

In addition Gðx,y,t,tÞ will be required to satisfy certain conditions on the control surface S. The application of Kirchhoff’s
procedure [33–35] for solving the wave Eq. (1) then yields the representation

jðx,tÞ ¼

Z 1
�1

Z
S

jðy,tÞ qG

qy1
ðx,y,t,tÞ�Gðx,y,t,tÞ qj

qy1
ðy,tÞ

� �
dS dt, x140, (3)

where the integration is over all source times �1oto1 and over the surface S (y1=0).

3. Pressure at the wavefront

Guo and Ffowcs Williams [13] observed that during an initial interval 0ototc � e2MR=2co of the impact the free
surface of the water remains undisturbed except within the circular contact region between the drop and the
water, because the radius a(t) of this circle (indicated in Fig. 1) is then increasing supersonically. Reference to Fig. 1 reveals
that

aðtÞ ¼ e
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2�ðR�UtÞ2

q
, e¼ Y

R
Z1, (4a)

Ce
ffiffiffiffiffiffiffiffiffiffiffi
2RUt
p

for
Ut

R
o

Utc

R
¼
e2

2
M2

51: (4b)

Thus da=dtCe=2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2RU=t

p
4co provided totc. For typical rain drops tc does not exceed a small fraction of a microsecond.

Therefore, the solution (3) can be evaluated for source times totc by taking Green’s function to have the form

Gðx,y,t,tÞ ¼ 1

4pjx�yj
d t�t� jx�yj

co

� �
þ

1

4pjx�yj
d t�t� jx�yj

co

� �
, (5)

where y ¼ ð�y1,y2,y3Þ, which satisfies qG=qy1 ¼ 0 on S. The corresponding component of the acoustic pressure
pðx,tÞ ��roqjðx,tÞ=qt, where ro is the mean density of the water, is then given by [13]

pðx,tÞ ¼
ro

2p
q
qt

Z
S

1

jx�yj
v1 y,t�

jx�yj

co

� �
dS, (6)
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where v1 is the normal component of velocity (in the +x1 direction) within the circle of contact, and the integration is
confined to the region for which the retarded time satisfies

0ot�
jx�yj

co
otc :

During this initial period of supersonic expansion of the circle of contact the induced motion is directed outwards from the
interface S, in the ‘+’ x1 direction within the water and in the ‘upwards’ or ‘� ’ direction within the drop. Indeed, this initial
motion must locally resemble that produced, respectively, by pistons with normal velocities 71

2U generating locally plane
pressure waves p¼ 1

2roUco. It follows that the total energy radiated from the expanding circle of contact during its period of
supersonic expansion is given by [13]

E¼ 2

Z tc

0
pa2ðtÞ

1

4
roU2co dt¼

p
8
e4R3roU2M3: (7)

Half of this energy is radiated directly into the water, and half into the drop, the latter subsequently radiating into the
water after multiple reflections within the drop. Guo and Ffowcs Williams [13] deduced from this that a fraction 3

16e
2M3 of

the original kinetic energy of the impinging drop is radiated during this initial period of impact, and that this represents the
dominant part of the impact radiation.

3.1. Far field acoustic pressure at the wavefront

In the acoustic far field within the water (jxj-1) on the main axis (y¼ 0 in Fig. 1), the pressure given by (6) can be
written

pðx,tÞ �
ro

2pjxj
qQ

qt
ð½t�Þ,

qQ

qt
ðtÞ ¼

1

2
Up qa2

qt
ðtÞ, (8)

where ½t� ¼ t�jxj=co is the retarded time on the x1 axis of symmetry, and Q is the effective volume source strength of the
drop pushing through the interface during the supersonic phase, i.e. (using (4b)) on the main axis

pðx,tÞ �
roU2

2

e2R

jxj
, jxj � jx1j-1, 0o ½t�otc: (9)

This formula is valid in all radiation directions (0oyop=2) at the very front ½t� � 0 of the radiating pulse, which is
determined by the initial volume flux from the immediate vicinity of the origin O.

4. Pressure variations to the rear of the wavefront

4.1. General formula

Components of the impact noise to the rear of the wavefront, which arrive at retarded times ½t�4tc , are generated when
the influence of the free surface pressure release condition is important, when the dominant acoustic modes have
wavelengths that become progressively larger than the retarded values of the contact radius a([t]). To evaluate these waves
it is necessary to use the compact Green’s function Gðx,y,t,tÞ derived in the Appendix and given explicitly in Eq. (A.9). This
vanishes on the free surface $¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2

2þy2
3

q
4aðtÞ,y1 ¼ 0 and has vanishing normal derivative qG=qy1 within the circle of

contact $oaðtÞ, y1 ¼ 0 of the drop and the water surface.
The acoustic pressure p¼�roqj=qt is then determined by Eq. (3) in the form

pðx,tÞ �
ro cosy
p2cojxj

q2

qt2

Z
S

v1ðy,½t�Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2ð½t�Þ�$2

q
dS, jxj-1, (10)

where the surface integration is over the interior of the circle of contact$oað½t�Þ, y1 ¼ 0 at the retarded time ½t� ¼ t�jxj=co.
There is no contribution from the first term in the integrand of (3) because pðy,tÞ, and therefore jðy,tÞ, vanishes on the free
surface. The result (10) describes a dipole radiation field within the water. The order of magnitude of the acoustic pressure
to the rear of the wavefront � roU2MðR=jxjÞ.

To evaluate the acoustic pressure from Eq. (10) requires knowledge of the evolution of the velocity v1 at the position of
the undisturbed surface of the water within the circle of contact. Following the initial period of impact of duration tc,
during which the circle of contact is expanding supersonically, acoustic disturbances within the drop bring about a rapid
readjustment within the drop over a time � 2R=co (typically of the order of 223ms). Experiments with rain drops [20]
indicate, however, that the subsequent decay from the high pressure at the wavefront of the pulse propagating in the water
occurs on a larger time scale which is a small fraction of R/U, usually about 0.1 ms. This decay can be incorporated into the
representation (10) by means of the following uniform approximation for the normal velocity within the circle of contact

v1ðy,tÞ ¼UCðUt=RÞ, $oaðtÞ, (11)
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where CðUt=UÞ40 is a suitable function that decreases monotonically from unity at t¼ 0. Then (10) becomes

pðx,tÞ �
2roMcosy

3pjxj
q2

qt2
a3ð½t�ÞC

U½t�

R

� �� �
, jxj-1: (12)

4.2. Exponential decay of normal velocity

The simplest analytical model for the normal velocity v1ðy,tÞ within the circle of contact is obtained by setting

C
Ut

R

� �
¼ e�aeUt=R, (13)

where the coefficient ae40 is constant. This exponential factor accounts for the rapid deceleration of the downward
motion within the circle of contact. During the brief interval 0ot5R=U of source times in which sound is produced by the
impact it will be assumed that the inertia of the water within the drop ensures that Eq. (4a) continues to be a good
approximation for the radius of the circle of contact.

These hypotheses lead to a representation of the radiated pressure (12) just to the rear of the wavefront that can be cast
in the form:

pðx,tÞ �
roU2

2

e2R

jxj

4

peMcosyF e ae,
U½t�

R

� �

1�
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R
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" #1=2

, jxj-1, (14)

where

F e ae,
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¼ 1þ2 ae
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e

3
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R
�1
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" #2

0
@

1
Ae�aeUt=R: (15)

The function F eðae,U½t�=RÞ describes the decay of the wave with increasing retarded time [t] and F e-1 as ½t�-0 at the
wavefront.
4.3. Normal velocity with variable time constant

The exponential model (13) describes a constant fractional rate of decay of the normal velocity over the impact region.
However, it may be more realistic to assume that the rate of decay actually increases with time elapsed from the beginning
of the impact. This is certainly one interpretation of the numerical results of Nystuen [4], Nystuen and Farmer [7] and
Nystuen et al. [16] for a 3 mm diameter raindrop, which exhibit a progressively rapid slowing of the absorption of the
droplet into the water after about 30ms. This situation can be simulated by the Gaussian approximation

C
Ut

R

� �
¼ e�ag ðUt=RÞ2 , (16)

where agðUt=RÞ plays the role of the variable time constant and ag is a constant.
The acoustic pressure is again given by formula (14), but with F eðae,Ut=RÞ replaced by

F g ag ,
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R
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R
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þ 4ag
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þ
2ag
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2ag
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R
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�1

 !
1�

Ut

R
�1

� �2
" #2

9=
;e�ag ðUt=RÞ2 , (17)

which satisfies F gðag ,0Þ ¼ 1.
4.4. Composite representation of the acoustic pressure

At the wavefront Eq. (14) and the same equation with F e replaced by F g predict the singular behaviour

pðx,tÞ �
roU2

2

e2R

jxj

4

p
eMcosyffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2U½t�=R

p ,
U½t�

R
-0, jxj-1, (18)

whereas during the initial period of impact the wavefront pressure assumes the finite level (9) predicted by Guo and
Ffowcs Williams [13].
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A composite formula for the acoustic pressure that provides a smooth transition between the predictions (9) and (14) is
evidently supplied by

pðx,tÞ �
roU2

2

e2R

jxj

4

peMcosyF a,
U½t�

R

� �

4

peMcosyþ 1�
U½t�

R
�1

� �2
" #1=2

0
@

1
A

, jxj-1, (19)

where F ða,U½t�=RÞ denotes either of (15) and (17), respectively, for the exponential or Gaussian normal velocity decay
models. This implies, for example, that on the principal axis y¼ 0 of the dipole radiation, the transition from the wavefront
to the low frequency oscillations in its wake occurs when

4eM
p �

ffiffiffiffiffiffiffiffiffiffiffi
2U½t�

R

r
i:e: when ½t� �

16

p2

e2MR

2co
� 1:5tc : (20)

5. Numerical predictions for a spherical drop

Consider a nominally spherical drop of radius R�Y¼ 2:3 mm impinging on water at its terminal velocity U=9.2 m/s.
This case was examined experimentally by Nystuen [21] in connection with a discussion with Pumphrey [22] regarding the
profile of the impact noise pulse. Fig. 2 illustrates a smoothed, hand drawn copy of the acoustic wave profile reported by
Nystuen [21, Fig. 2] directly beneath the drop (along the dipole axis y¼ 0) at jxj ¼ 1 m below the surface.

Figs. 3 and 4 depict ‘best fit’ approximations to this profile predicted by the composite approximation (19) for y¼ 0 at
jxj ¼ 1 m, respectively, for the exponential and Gaussian models when

ae ¼ 12 and ag ¼ 50: (21)

In each case the predicted waveform is qualitatively similar to that measured by Nystuen [21]; the wavefront peak is much
too large, of magnitude � 96 Pa, but its duration is much less than 1ms (cf. Eq. (20)). The subsequent single cycle
oscillations are similar in the two cases, but the minimum in the Gaussian approximation (at 0.025 ms and of magnitude
�2.9 Pa) is evidently closer to the experimentally observed value. Nystuen [21] also gives details of the sound pressure
level frequency spectrum 20� log10jp̂ðx,f Þj (dB), where p̂ðx,f Þ is the temporal Fourier transform of the far field acoustic
pressure, defined by

p̂ðx,f Þ ¼

Z 1
�1

pðx,tÞ e2pift dt: (22)

The spectrum exhibits a broad peak near f=15 kHz, and in order to make the plots in Figs. 3 and 4 the values (21) of the
coefficients ae, ag were chosen to ensure that the corresponding theoretical spectra also peak near 15 kHz, as illustrated in
Fig. 5. It is clear that of the two approximations (13) and (16) for the normal velocity decay rate, the Gaussian model (16)
provides the best overall fit to the observed wave profile, and we shall henceforth consider only this case.

Nystuen’s [21] measurements apparently had a resolution of at most 200 kHz, which is probably not sufficient to
capture details of the wave profile of very short time scale. A tentative examination of the consequences of this frequency
Fig. 2. Acoustic impact pressure signature (Pa) measured by Nystuen [21] at y¼ 03 , jxj ¼ 1 m for a drop of radius R=2.3 mm impinging at U=9.2 m/s. This

is a smoothed copy by hand from Fig. 2 of Nystuen’s paper.



Fig. 3. Impact acoustic pressure (Pa) at y¼ 03 , jxj ¼ 1 m predicted by the exponential model (13), (15), and (19) when ae ¼ 12 for a drop of radius

R=2.3 mm impinging on water at speed U=9.2 m/s. The large peak p� 95:8 Pa at the wavefront (Eq. (9)) is not shown.

Fig. 4. Impact acoustic pressure (Pa) at y¼ 03 , jxj ¼ 1 m predicted by the Gaussian model (16), (17), and (19) when ag ¼ 50 for a drop of radius R=2.3 mm

impinging on water at speed U=9.2 m/s. The large peak p� 95:8 Pa at the wavefront (Eq. (9)) is not shown.
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limitation is obtained by calculating a ‘corrected’ pressure profile by Fourier inversion after first removing from the
predicted Fourier transform p̂ðx,f Þ contributions with absolute frequencies jf j4200 kHz. This yields the wave profile
displayed in Fig. 6 for the Gaussian model (ag ¼ 50Þ, which now exhibits a maximum pressure at the wavefront � 7:6 Pa,
very similar to that reported by Nystuen [21] and shown in our Fig. 2.

The small scale waviness superimposed on the pressure profile of Fig. 6 is caused by the frequency cut-off at 200 kHz.
The first of these ‘ripples’ occurs near ½t� � 6ms. This type of distortion of the wavefront has previously been interpreted in
terms of high frequency, multiple reflections of the initial ‘water hammer’ wavefront of Guo and Ffowcs Williams [13]
within the drop (e.g. [15]), but it could possibly be an artifact of an inaccurate measurement procedure.

Fig. 7 illustrates the dependence of the sound pressure level frequency spectrum on the decay time-constant ag of the
Gaussian approximation (16) and (17). Three predicted spectra are plotted for ag ¼ 25,50,100. Larger values of ag produce a
progressively more rapid decay of the wave pulse and shift the spectrum peak to higher frequencies. All spectra exhibit a
common form at very high frequencies, where they are governed by the behaviour of the pressure very close to the
wavefront, which is independent of ag . At very high frequencies (not reached in Fig. 7, and within the region of validity of
the Guo–Ffowcs Williams [13] approximation) the spectra decay like 1/f2. The peak for ag ¼ 50 occurs at f C15 kHz which
is close to the corresponding maximum in the spectrum measured by Nystuen [21]. It is noteworthy, however, that
variations in the value of ag , up or down by a factor of two, do not produce exceptional changes in this peak frequency.



Fig. 5. Predicted acoustic pressure spectral level 20� log10jp̂ðx,f Þj (arbitrary units) of the impact sound radiated at y¼ 03 by a drop of radius R=2.3 mm

impinging at U=9.2 m/s: Gaussian model for ag ¼ 50 and exponential model for ae ¼ 12.

Fig. 6. Predicted acoustic pressure (Pa) at y¼ 03 , jxj ¼ 1 m for the Gaussian model with ag ¼ 50, R=2.3 mm, U=9.2 m/s when contributions to the

calculated pressure at frequencies exceeding 200 kHz are omitted.
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Both the shape of the sound pressure level spectrum and the peak frequency correspond closely to those reported by
Pumphrey et al. [8] and Pumphrey [20] for the radiation from resonant volumetric oscillations of air bubbles entrained by
small raindrops, typically of radii � 0:420:55 mm, which have resonance frequencies in the range 12–14 kHz. This
correspondence is also a feature of the earlier measurements of Nystuen and Farmer [5,7]. But the two sound sources tend
to be well separated in time, the resonant radiation from an entrained bubble following the impact sound after a delay of
about 20 ms. The kinetic energy of such drops is very small, however, so that whenever bubble entrainment occurs the
radiation is dominated by the bubble resonance. This coincidence in the frequency of small-bubble radiation and the
impact noise from larger raindrops has been responsible for much confusion (see [8,11,12,14,17–19,22]).

The net acoustic energy E produced by the impact is determined by

E ¼
Z 1

0

I
S

p2ðx,tÞ

roco
dS dt, (23)

where the surface integral is over a large hemisphere in the water in the acoustic far field with centre at the origin and
radius jxj, and the integrals are evaluated using Eqs. (17) and (19). The upper limit of the integration with respect to the
time can actually be restricted to the finite interval 0oU½t�=Ro1, because of the rapid exponential decay of the wave; at
later times formula (4a) becomes inapplicable. For example, U[t]/R=1 when ½t�C2:5 ms for the case considered above of
R=2.3 mm and U=9.2 m/s.



Fig. 7. Predicted acoustic pressure spectral level 20� log10jp̂ðx,f Þj (arbitrary units) of the impact sound radiated at y¼ 03 by a drop of radius R=2.3 mm

impinging at U=9.2 m/s, for the Gaussian model with ag ¼ 25,50,100.

Table 1

Total radiated impact energy relative to the wavefront energy E¼ p=8e4R3roU2M3 [13] for a spherical drop with R=2.3 mm and U= 9.2 m/s.

ag 25 50 100

E=E 8.16 7.98 7.76
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The calculation can be used to evaluate the ratio E=E, where E is the total radiated energy (7) in the wavefront [13].
Results are given in Table 1 for the Nystuen experiment [21].

Similar values of E=E are obtained for other impact velocities U relevant to raindrops. For example, E=E� 10:3,8:8,
respectively, for U=3, 6 m/s.
6. Conclusion

The underwater sound produced by a drop landing on smooth water initially takes the form of a sharp pressure pulse of
short duration. The wavefront of this pulse consists of a rapid pressure peak typically lasting less about a microsecond,
whose strength is proportional to the drop kinetic energy. This is produced during the very initial stages of impingement of
the drop on the water surface, when the radius of the circle of contact between the drop and the flat water surface is
growing supersonically (relative to the sound speed in the water). The sound is then produced by a piston-like monopole

source that is uninfluenced by the presence of the pressure-release free surface, so that the very front of the wave exhibits
an amplitude that is independent of the radiation direction in the water. According to our theory the pressure decreases
very rapidly behind the wavefront and acquires the characteristics of a dipole sound field (with dipole axis normal to the
water interface) as soon as the pressure-release condition on the free surface begins to influence the radiation from the
piston source—the rate of expansion of the contact circle is now subsonic and the characteristic wavelength of sound
production rapidly becomes much larger than its radius. Within a few microseconds the dipole pressure exhibits a single
cycle oscillation, becoming negative and attaining a maximum negative amplitude �OðMÞ smaller than the wavefront
amplitude, before finally relaxing to the steady state after attaining a small positive maximum at about 0.06 ms after the
initial impact. At later times (20 ms or more after the initial impact) the sound is generally dominated by that produced by
one or more bubbles entrained or produced by ‘splashing impact’ of the drop. It is predominantly this component of the
surface interaction noise that is usually responsible for the undersea sound from rainfall, typically when raindrops have
diameters exceeding about 2 mm.

The analytical theory of this paper yields predictions of the impact noise that are broadly in agreement with
experiment. It should therefore be possible to estimate from the theory the contribution of ‘spray’ generated sound to the
noise produced by the impact of ventilating gas jets on the water interface of a supercavitating underwater vehicle
[26–28]. This involves high speed motion of water parallel to the interface, giving rise to the likelihood that gas jet
impingement will entrain water droplets near the interface, whose subsequent convection by the jet into the water will
contribute significantly to the production of jet-interface interaction noise.
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Appendix A. Compact Green’s function for a pressure-release free surface

Eq. (2) is to be solved for x1,y140 subject to the conditions

Gðx,y,t,tÞ ¼ 0 for y1 ¼ 0, $4aðtÞ,
qG

qy1
ðx,y,t,tÞ ¼ 0 for y1 ¼ 0, $oaðtÞ,

9>=
>; where $¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2

2þy2
3

q
: (A.1)

The circular domain $oaðtÞ is bounded by the circle of contact between the drop and the nominally plane free surface of
the water at time t (Fig. A1). The solution is required at source times for which the rate of increase of the radius aðtÞ
satisfies

1

co

qa

qt
51 i:e: for tbtc �

e2MR

2co
: (A.2)

The wavelength of the generated sound is then much larger than the radius aðtÞ and its production is therefore fully
influenced by the pressure-release constraint on the free surface. For example: (A.2) is satisfied when t40:1ms for the case
considered in Section 5 of a drop of radius 2.3 mm with impingement terminal velocity U � 9:2 m=s.

In the absence of the drop (when aðtÞ � 0) we have G¼ Go where

Goðx,y,t,tÞ ¼ 1

4pjx�yj
d t�t� jx�yj

co

� �
�

1

4pjx�yj
d t�t� jx�yj

co

� �
: (A.3)

In this formula y ¼ ð�y1,y2,y3Þ, and Goðx,y,t,tÞ ¼ 0 on y1=0.
The functional form of Gðx,y,t,tÞ for source points y in the neighbourhood of the circle of contact and for an observer at x

in the water in the acoustic far field, so that jyj �OðaðtÞÞ5 jxj, is found by first noting that

Goðx,y,t,tÞC 1

2pjxj
x1y1

cojxj
du t�t� jxj

co

� �
for jyj �OðaðtÞÞ, (A.4)

where the prime denotes differentiation with respect to the argument of the delta function.
In the presence of the expanding disc on which qG=qy1 ¼ 0 we put G¼ GoþGu where, for long wavelength unsteady

motion close to disc, Gu will be a solution of Laplace’s equation q2Gu=qy2
j ¼ 0 that decays rapidly with distance in the water

from the disc. We therefore write

Gðx,y,t,tÞC cosy
2pcojxj

ðy1þFðy,tÞÞdu t�t� jxj
co

� �
, (A.5)

where y¼ cos�1ðx1=jxjÞ is the radiation direction shown in Figs. 1 and A1 to the observer in the far field, and F is the
harmonic function that vanishes at large distances from the disc and satisfies on y1=0 the conditions

F¼ 0, $4aðtÞ, and 1þ
qF
qy1
¼ 0, $oaðtÞ: (A.6)

The required solution of Laplace’s equation for F is given in Sneddon [36, pp. 76 and 77] in the form

F¼
2a

p

Z 1
0

1

k

sinðkaÞ

ka
�cosðkaÞ

� �
J0ðk$Þe

�ky1 dk, a� aðtÞ, y140, (A.7)

where J0ð�Þ is the Bessel function of order zero [37].
Fig. A1. Configuration defining the compact Green’s function: G=0 on the air–water interface; qG=qy1 ¼ 0 on the surface disc $oaðtÞ.
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By using formulae in Gradshteyn and Ryzhik [37, Section 6.693] we find

F¼
2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2�$2
p

for $oa, y1 ¼ 0,

0 for $4a, y1 ¼ 0,

8<
: (A.8)

and therefore that

Gðx,y,t,tÞC cosy
p2cojxj

HðaðtÞ�$Þða2ðtÞ�$2Þ
1
2du t�t� jxj

co

� �
on y1 ¼ 0, (A.9)

where Hð�Þ is the Heaviside unit step function.
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